Yield Strength as a Function of Dislocation Density

Travis Grider, David Bahr
Characterization of Advanced Materials

Introduction
Nanoindentation is used on samples of brass whose grain size and hardness is controlled in order to test the procedure’s viability on samples that have a moderate amount of dislocations.

Procedures and Methods
Before doing nanoindentation, the bulk properties of brass need to be determined so they can be separated from the nanoindentation data

- Cold Rolling—plastic deformation which occurs well below melting point
- Annealing—Heat treatment used for lowering dislocation density
- Grinding/Polishing—removes surface damage to produce reasonably flat, reflective surface
- Etching—reveals accurate, sharp definition of true microstructure of material
- Heyn Intercept Method—Fast and accurate technique for calculating average grain size diameter

Once the grain size of a sample is determined, the Vickers Hardness is found using a micro-hardness indenter, which uses a square pyramidal indenter tip.

Yield strength of a material is a very useful statistic to know, as it gives a good upper limit for the stress the given material can undergo before plastic deformation. Many metals’ yield strength follows the Hall–Petch relationship,

\[\sigma_y = \sigma_0 + kd^{-1/2} \]

where \(k \) is a material-dependent constant and \(d \) is the average grain size diameter. The Vickers hardness number is in kgforce/mm², force per contact area. This must be converted to SI units and scaled so that it is force per projected area. The surface area of a Vickers indent is given by \(A = d^2/2\sin(136°)/2 \), where \(d \) is the average diagonal length of the indent. The projected area of this area is just \(d^2/2 \). Taking the ratio of contact to projected area and multiplying by the gravitational constant gives 10.57, divided by 3 for geometric scaling gives 3.52 as the multiplication factor converting from HV to \(\sigma_y \).

Results
Grain size and calculated yield stress are plotted and a curve fit is applied using the Hall–Petch equation to give experimental values for \(\sigma_y \) and \(k \).

![Graph](http://www.hardness testers.com/vickers.jpg)

Conclusions
Using nanoindentation, yield points can be found in materials with moderate dislocation densities while avoiding the use of electropolishing.

Literature Used

Acknowledgements: I would like to thank Mohammed Zbib and Julie Reid for their assistance throughout the summer. This work was supported by the National Science Foundation’s REU program under grant number DMR–0755055

A slightly different sequence of sample prep is needed to prepare a sample for nano-indentation

Normal order: Cold roll > Anneal > Grind, Polish > Etch > photograph
Nano-indent order: Cold roll > Grind, Polish > Anneal > Etch > indent
The sample is etched after annealing to minimize mechanical damage to the surface as much as possible